NOTE

Rates of Best Rational Approximation of Analytic Functions

Vasiliy A. Prokhorov
The University of South Alabama, Mobile, Alabama 36688-0002, U.S.A.
E-mail: prokhorov@mathstat.usouthal.edu

Communicated by Hans Wallin
Received December 29, 1999; accepted July 17, 2000;
published online November 28, 2000

Abstract

Let E be a compact set in the extended complex plane $\overline{\mathbf{C}}$ and let f be holomorphic on E. Denote by ρ_{n} the distance from f to the class of all rational functions of order at most n, measured with respect to the uniform norm on E. We obtain results characterizing the relationship between estimates of $\lim _{\inf }^{n \rightarrow \infty} \rho_{n}^{1 / n}$ and $\lim \sup _{n \rightarrow \infty} \rho_{n}^{1 / n}$. © 2000 Academic Press

Let f be holomorphic on a compact set E in the extended complex plane $\overline{\mathbf{C}}$ and let ρ_{n} be the error in best approximation to f in the supremum norm on E by rational functions of order at most n. By the well-known theorem of Walsh [6], if f is holomorphic on $\overline{\mathbf{C}} \backslash F$, where F is a compact set in $\overline{\mathbf{C}}$ such that $F \cap E=\varnothing$, then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n} \leqslant 1 / \rho, \tag{1}
\end{equation*}
$$

where $\rho=\exp (1 / C(E, F))$ and $C(E, F)$ denotes the condenser capacity associated with (E, F) (see, for example, [5]). We mention the paper of Parfenov [1] (the case when E is the unit disk) and the paper of the author [2] (the general case), where methods in the theory of Hankel operators are used to characterize the rate of convergence of the product $\rho_{1} \rho_{2} \cdots \rho_{n}$ to zero:

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\rho_{1} \rho_{2} \cdots \rho_{n}\right)^{1 / n^{2}} \leqslant 1 / \rho \tag{2}
\end{equation*}
$$

(see also [4]). Walsh's inequality (1) and the following upper estimate for $\liminf _{n \rightarrow \infty} \rho_{n}^{1 / n}$

$$
\liminf _{n \rightarrow \infty} \rho_{n}^{1 / n} \leqslant 1 / \rho^{2}
$$

are immediate consequences of the inequality (2). It is also proved in [2], that if

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n}=\frac{1}{\rho}, \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \rho_{n}^{1 / n}=0 . \tag{4}
\end{equation*}
$$

The present note is devoted to results generalizing (3) and (4) and describing the relationship between estimates of $\lim \sup _{n \rightarrow \infty} \rho_{n}^{1 / n}$ and $\lim _{\inf _{n \rightarrow \infty}} \rho_{n}^{1 / n}$.

Theorem 1. (i) If

$$
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n} \geqslant \frac{\lambda}{\rho}, \quad \frac{1}{\rho} \leqslant \lambda \leqslant 1,
$$

then

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\rho_{1} \rho_{2} \cdots \rho_{n}\right)^{1 / n^{2}} \leqslant \frac{1}{\rho}\left(\frac{1}{\rho}\right)^{1 / 4\left(\sqrt{\log \lambda / \log (1 / \rho)}-\sqrt{\log (1 / \rho) / \log \lambda)^{2}}\right.} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \rho_{n}^{1 / n} \leqslant \frac{1}{\rho^{2}}\left(\frac{1}{\rho}\right)^{1 / 2\left(\sqrt{\log \lambda / \log (1 / \rho)}-\sqrt{\log (1 / \rho) / \log \lambda)^{2}}\right.} . \tag{6}
\end{equation*}
$$

(ii) $I f$

$$
\liminf _{n \rightarrow \infty} \rho_{n}^{1 / n} \geqslant \frac{\lambda}{\rho}, \quad 0<\lambda \leqslant 1 / \rho
$$

then

$$
\limsup _{n \rightarrow \infty} \rho_{n}^{1 / n} \leqslant \frac{\lambda}{\rho}\left(\frac{1}{\rho}\right)-\sqrt{(\log \lambda / \log (1 / \rho))^{2}-1} .
$$

In particular, if

$$
\liminf _{n \rightarrow \infty} \rho_{n}^{1 / n} \geqslant \frac{1}{\rho^{2}},
$$

then

$$
\lim _{n \rightarrow \infty} \rho_{n}^{1 / n}=\frac{1}{\rho^{2}}
$$

Proof. We prove (i). The second part (ii) of Theorem 1 follows directly from (i). Denote by Λ a sequence of positive integers such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty, n \in S} \rho_{n}^{1 / n} \geqslant \frac{\lambda}{\rho}, \tag{7}
\end{equation*}
$$

where $1 / \rho \leqslant \lambda \leqslant 1$. Fix an arbitrary $0 \leqslant \theta \leqslant 1$. Choose a sequence of integers $\left\{k_{n}\right\}, n=1,2, \ldots$, such that $1 \leqslant k_{n} \leqslant n$,

$$
\lim _{n \rightarrow \infty} k_{n}=\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{k_{n}}{n}=\theta .
$$

Since the sequence $\left\{\rho_{n}\right\}, n=1,2, \ldots$, is nonincreasing,

$$
\left(\rho_{1} \cdots \rho_{k_{n}}\right) \rho_{n}^{n-k_{n}} \leqslant \rho_{1} \rho_{2} \cdots \rho_{n} .
$$

From this and from the relations (2) and (7), we obtain

$$
\limsup _{n \rightarrow \infty, n \in A}\left(\rho_{1} \rho_{2} \cdots \rho_{k_{n}}\right)^{1 / k_{n}^{2}} \leqslant\left(\frac{1}{\rho}\right)^{1 / \theta} \lambda^{-1 / \theta^{2}+1 / \theta},
$$

which implies that

$$
\liminf _{n \rightarrow \infty}\left(\rho_{1} \rho_{2} \cdots \rho_{n}\right)^{1 / n^{2}} \leqslant\left(\frac{1}{\rho}\right)^{1 / \theta} \lambda^{-1 / \theta^{2}+1 / \theta} .
$$

Substituting $\theta=2(\log (1 / \rho) / \log \lambda+1)^{-1}$, we get (5). It remains to remark that (6) follows immediately from (5).

We now point out results characterizing the rate of decrease of the best approximation errors ρ_{n} of entire functions. The following estimates are established in [2] (see also [3]):

If f is an entire function of finite order $\sigma \geqslant 0$, then

$$
\begin{array}{r}
\limsup _{n \rightarrow \infty} \frac{\log \left(\rho_{1} \rho_{2} \cdots \rho_{n}\right)}{n^{2} \log n} \leqslant-\frac{1}{\sigma}, \\
\\
\limsup _{n \rightarrow \infty} \frac{\log \rho_{n}}{n \log n} \leqslant-\frac{1}{\sigma},
\end{array}
$$

and

$$
\liminf _{n \rightarrow \infty} \frac{\log \rho_{n}}{n \log n} \leqslant-\frac{2}{\sigma} .
$$

As above, it is easy to prove the following assertion.
Theorem 2. (i) If

$$
\limsup _{n \rightarrow \infty} \frac{\log \rho_{n}}{n \log n} \geqslant-\frac{\lambda}{\sigma}, \quad 1 \leqslant \lambda \leqslant 2
$$

then

$$
\liminf _{n \rightarrow \infty} \frac{\log \left(\rho_{1} \rho_{2} \cdots \rho_{n}\right)}{n^{2} \log n} \leqslant-\frac{1}{\sigma}-\frac{(\lambda-2)^{2}}{4 \sigma(\lambda-1)}
$$

and

$$
\liminf _{n \rightarrow \infty} \frac{\log \rho_{n}}{n \log n} \leqslant-\frac{2}{\sigma}-\frac{(\lambda-2)^{2}}{2 \sigma(\lambda-1)} .
$$

(ii) $I f$

$$
\liminf _{n \rightarrow \infty} \frac{\log \rho_{n}}{n \log n} \geqslant-\frac{\lambda}{\sigma}, \quad 2 \leqslant \lambda \leqslant \infty,
$$

then

$$
\limsup _{n \rightarrow \infty} \frac{\log \rho_{n}}{n \log n} \leqslant-\frac{\lambda-\sqrt{\lambda^{2}-2 \lambda}}{\sigma} .
$$

In particular, if

$$
\liminf _{n \rightarrow \infty} \frac{\log \rho_{n}}{n \log n} \geqslant-\frac{2}{\sigma}
$$

then

$$
\lim _{n \rightarrow \infty} \frac{\log \rho_{n}}{n \log n}=-\frac{2}{\sigma} .
$$

REFERENCES

1. O. G. Parfenov, Estimates of the singular number of a Carleson operator, Mat. Sb. 131 (1986), 501-518; English transl. in Math. USSR Sb. 59 (1988).
2. V. A. Prokhorov, Rational approximation of analytic function, Mat. Sb. 184 (1993), 3-32; English transl. in Russian Acad. Sci. Sb. Math. 78 (1994).
3. V. A. Prokhorov, On the degree of rational approximation of meromorphic functions, Mat. Sb. 185 (1994), 3-26; English transl. in Russian Acad. Sci. Sb. Math. 81 (1995).
4. V. A. Prokhorov and E. B. Saff, Rates of best uniform rational approximation of analytic functions by ray sequences of rational functions, Constr. Approx. 15 (1999), 155-173.
5. E. B. Saff and V. Totik, "Logarithmic Potentials with External Fields," Springer-Verlag, Heidelberg, 1997.
6. J. L. Walsh, "Interpolation and Approximation by Rational Functions in the Complex Domain," 5th ed., Amer. Math. Soc., Providence, RI, 1969.
