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Let E be a compact set in the extended complex plane C� and let f be
holomorphic on E. Denote by \n the distance from f to the class of all rational
functions of order at most n, measured with respect to the uniform norm on E. We
obtain results characterizing the relationship between estimates of lim infn � � \1�n

n

and lim supn � � \1�n
n . � 2000 Academic Press

Let f be holomorphic on a compact set E in the extended complex plane
C� and let \n be the error in best approximation to f in the supremum norm
on E by rational functions of order at most n. By the well-known theorem
of Walsh [6], if f is holomorphic on C� "F, where F is a compact set in C�
such that F & E=<, then

lim sup
n � �

\1�n
n �1�\, (1)

where \=exp(1�C(E, F )) and C(E, F ) denotes the condenser capacity
associated with (E, F ) (see, for example, [5]). We mention the paper of
Parfenov [1] (the case when E is the unit disk) and the paper of the
author [2] (the general case), where methods in the theory of Hankel
operators are used to characterize the rate of convergence of the product
\1 \2 } } } \n to zero:

lim sup
n � �

(\1\2 } } } \n)1�n2
�1�\ (2)
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(see also [4]). Walsh's inequality (1) and the following upper estimate for
lim infn � � \1�n

n

lim inf
n � �

\1�n
n �1�\2

are immediate consequences of the inequality (2). It is also proved in [2],
that if

lim sup
n � �

\1�n
n =

1
\

, (3)

then

lim inf
n � �

\1�n
n =0. (4)

The present note is devoted to results generalizing (3) and (4) and
describing the relationship between estimates of lim supn � � \1�n

n and
lim infn � � \1�n

n .

Theorem 1. (i) If

lim sup
n � �

\1�n
n �

*
\

,
1
\

�*�1,

then

lim inf
n � �

(\1\2 } } } \n)1�n2
�

1
\ \

1
\+

1�4(- log *�log(1�\)&- log(1�\)�log *)2

(5)

and

lim inf
n � �

\1�n
n �

1
\2 \1

\+
1�2(- log *�log(1�\)&- log(1�\)�log *)2

. (6)

(ii) If

lim inf
n � �

\1�n
n �

*
\

, 0<*�1�\,

then

lim sup
n � �

\1�n
n �

*
\ \

1
\+&- (log *�log(1�\))2&1.
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In particular, if

lim inf
n � �

\1�n
n �

1
\2 ,

then

lim
n � �

\1�n
n =

1
\2 .

Proof. We prove (i). The second part (ii) of Theorem 1 follows directly
from (i). Denote by 4 a sequence of positive integers such that

lim
n � �, n # 4

\1�n
n �

*
\

, (7)

where 1�\�*�1. Fix an arbitrary 0�%�1. Choose a sequence of integers
[kn], n=1, 2, ..., such that 1�kn�n,

lim
n � �

kn=� and lim
n � �

kn

n
=%.

Since the sequence [\n], n=1, 2, ..., is nonincreasing,

(\1 } } } \kn
) \n&kn

n �\1\2 } } } \n .

From this and from the relations (2) and (7), we obtain

lim sup
n � �, n # 4

(\1 \2 } } } \kn
)1�k2

n�\1
\+

1�%

*&1�%2+1�%,

which implies that

lim inf
n � �

(\1\2 } } } \n)1�n2
�\1

\+
1�%

*&1�%2+1�%.

Substituting %=2(log(1�\)�log *+1)&1, we get (5). It remains to remark
that (6) follows immediately from (5). K

We now point out results characterizing the rate of decrease of the best
approximation errors \n of entire functions. The following estimates are
established in [2] (see also [3]):
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If f is an entire function of finite order _�0, then

lim sup
n � �

log(\1\2 } } } \n)
n2 log n

�&
1
_

,

lim sup
n � �

log \n

n log n
�&

1
_

,

and

lim inf
n � �

log \n

n log n
�&

2
_

.

As above, it is easy to prove the following assertion.

Theorem 2. (i) If

lim sup
n � �

log \n

n log n
�&

*
_

, 1�*�2,

then

lim inf
n � �

log(\1\2 } } } \n)
n2 log n

�&
1
_

&
(*&2)2

4_(*&1)

and

lim inf
n � �

log \n

n log n
� &

2
_

&
(*&2)2

2_(*&1)
.

(ii) If

lim inf
n � �

log \n

n log n
�&

*
_

, 2�*��,

then

lim sup
n � �

log \n

n log n
�&

*&- *2&2*
_

.

In particular, if

lim inf
n � �

log \n

n log n
�&

2
_
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then

lim
n � �

log \n

n log n
=&

2
_

.
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